

Outdoor Unit For IT Cooling Application

OUTDOOR UNIT m-MOCU-G02-050

$C \in$ For use with R410A

INSTALLATION MANUAL

For safe and correct use, please read this installation manual thoroughly before installing the air-conditioner unit.

INSTALLATIONSHANDBUCH

Zum sicheren und ordnungsgemäßen Gebrauch der Klimageräte das Installationshandbuch gründlich durchlesen.

MANUEL D'INSTALLATION

Veuillez lire le manuel d'installation en entier avant d'installer ce climatiseur pour éviter tout accident et vous assurer d'une utilisation correcte.

INSTALLATIEHANDLEIDING

Voor een veilig en juist gebruik moet u deze installatiehandleiding grondig doorlezen voordat u de airconditioner installeert.

MANUAL DE INSTALACION

Para un uso seguro y correcto, lea detalladamente este manual de instalación antes de montar la unidad de aire acondicionado.

MANUALE DI INSTALLAZIONE

Per un uso sicuro e corretto, leggere attentamente questo manuale di installazione prima di installare il condizionatore d'aria.

ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ ΕΓΚΑΤΑΣΤΑΣΗΣ

Για ασφάλεια και σωστή χρήση, παρακαλείστε διαβάσετε προσεχτικά αυτό το εγχειρίδιο εγκατάστασης πριν αρχίσετε την εγκατάσταση της μονάδας κλιματισμού.

MANUAL DE INSTALAÇÃO
Para segurança e utilização correctas, leia atentamente este manual de instalação antes de instalar a unidade de ar condicionado.

INSTALLATIONSMANUAL

Læs venligst denne installationsmanual grundigt, før De installerer airconditionanlægget, af hensyn til sikker og korrekt anvendelse.

INSTALLATIONSHANDBOK

Läs den här installationshandboken noga innan luftkonditioneringsenheten installeras, för säker och korrekt användning.

MONTAJ ELKITABI

Emniyetli ve doğru biçimde nasıl kullanılacağını öğrenmek için lütfen klima cihazını monte etmeden önce bu elkitabını dikkatle okuyunuz.

PODRĘCZNIK INSTALACJI

W celu bezpiecznego i poprawnego korzystania należy przed zainstalowaniem klimatyzatora dokładnie zapoznać się z niniejszym podręcznikiem instalacji.

INSTALLASJONSHÅNDBOK

For sikker og riktig bruk, skal du lese denne installasjonshåndboken nøye før du installerer klimaanlegget.

РУКОВОДСТВО ПО УСТАНОВКЕ

Для осторожного и правильного использования прибора необходимо тщательно ознакомиться с данным руководством по установке до выполнения установки кондиционера.

en

pt

CONTENTS

1. Safety precautions ······	2
1-1. General precautions	2
1-2. Precautions for transporting the unit	3
1-3. Precautions for unit installation	4
1-4. Precautions for piping work	4
1-5. Precautions for electrical wiring	
1-6. Precautions for relocating or repairing the unit	
1-7. Additional precautions	
2. About the product ······	
3. Combination of outdoor units ······	8
4. Specifications ······	8
5. Package contents·····	8
6. Transporting the unit ······	
7. Installation location ······	10
7-1. Single unit installation	
7-2. Multiple unit installation	
8. Foundation work ······	_
9. Refrigerant piping work ······	15
9-1. Restrictions	15
9-2. Pipe selection	17
9-3. Twinning kit selection	18
9-4. Pipe connection example	18
9-5. Piping connections and valve operations	
9-6. Air-tightness test	
9-7. Thermal insulation for pipes	
9-8. Evacuation of the system	
9-9. Additional refrigerant charge	
10. Electrical work ······	28
10-1. Before electrical work	28
10-2. Power cables and device capacity	
10-3. Control cable specifications	
10-4. System configuration	
10-5. Wiring connections in the control box	
10-6. Address setting	
11. Test run ·····	
11-1. Before a test run	
11-2. Function setting	
11-3. Operation characteristics in relation to the refrigerant charge	
11-4. Operation check	
12. Inspection and maintenance ······	
13. Rating plate information	

1. Safety precautions

- ► Read and observe the safety precautions below and the instructions provided on the labels affixed to the unit.
- ► Retain this manual for future reference. Make sure that this manual is passed on to the end users.
- ► All refrigerant piping work, electrical work, air-tightness test, and brazing work must be performed by qualified personnel.
- ► Incorrect use may result in serious injury.

A WARNING	: indicates a hazardous situation which, if not avoided, could result in death or serious injury.
A CAUTION	: indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.
CAUTION	: addresses practices not related to personal injury, such as product and/or property damage.

1-1. General precautions

Do not use any refrigerant other than the type indicated in the manuals for the unit and on the nameplate.

- Doing so will cause the unit or pipes to burst, or result in an explosion or fire during use, during repairs, or at the time of disposal of the unit.
- It may also be in violation of applicable laws.
- MITSUBISHI ELECTRIC HYDRONICS & IT COOLING SYSTEMS S.p.A. cannot be held responsible for malfunctions or accidents resulting from the use of the wrong type of refrigerant.

Do not use the unit in an unusual environment.

- If the unit is used in areas exposed to large amounts of oil, steam, organic solvents, or corrosive gases (such as ammonia, sulfuric compounds, or acids), or areas where acidic/alkaline solutions or special chemical sprays are used frequently, it may significantly reduce the performance and corrode the internal parts, resulting in refrigerant leakage, water leakage, injury, electric shock, malfunction, smoke, or fire.

Do not change the settings of the safety or protection devices.

- Forcing the unit to operate by disabling the safety devices, such as the pressure switch or the thermal switch, may result in bursting, fire, or explosion.
- Operating the unit with a safety device whose settings have been changed may result in bursting, fire, or explosion.
- Using safety devices other than those specified by MITSUBISHI ELECTRIC HYDRONICS & IT COOLING SYSTEMS S.p.A. may result in bursting, fire, or explosion.

Do not alter or modify the unit.

- Doing so will result in refrigerant leakage, water leakage, serious injury, electric shock, or fire.

Do not wet the electrical parts.

- Doing so may result in current leakage, electric shock, malfunction, or fire.

Do not touch the electrical parts, switches, or buttons with wet fingers.

- Doing so may result in electric shock, malfunction, or fire.

Do not touch the refrigerant pipes and refrigerant line components with bare hands during and immediately after operation.

- The refrigerant in the pipes will be very hot or very cold, resulting in frostbite or burns.

Do not touch the electrical parts with bare hands during and immediately after operation.

- Doing so may result in burns.

Ventilate the room while servicing the unit.

- If the refrigerant leaks, oxygen deficiency may result. If the leaked refrigerant comes in contact with a heat source, toxic gas will be generated.

If you notice any abnormality (e.g., a burning smell), stop the operation, turn off the power switch, and consult your dealer.

- Continuing the operation may result in electric shock, malfunction, or fire.

Properly install all required covers and panels on the terminal box and the control box.

- If dust or water enters the unit, this may result in electric shock or fire.

Periodically check the unit base for damage.

- If the damage is left uncorrected, the unit will fall and cause serious injury.

Consult your dealer for the proper disposal of the unit.

- The refrigerant oil and the refrigerant in the unit will pose a risk of environmental pollution, fire, or explosion.

Children should be supervised to ensure that they do not play with the appliance.

Do not operate the unit with the panels and guards removed.

- Rotating, hot, or high-voltage parts may cause injury, electric shock, or fire.

Do not touch fans, heat exchanger fins, or the sharp edges of components with bare hands.

- Doing so may result in injury.

Wear protective gloves when working on the unit.

- Failure to do so may result in injury.

1-2. Precautions for transporting the unit

When lifting the unit, pass the slings through the four designated sling holes.

- Improper lifting will cause the unit to topple or fall, resulting in serious injury.

A CAUTION

Do not lift the unit with the PP bands that are used on some products.

- Doing so may result in injury.

Observe the restrictions on the maximum weight that a person can lift, which is specified in local regulations.

- Failure to do so may result in injury.

1-3. Precautions for unit installation

Do not install the unit where combustible gas may leak.

- If combustible gas accumulates around the unit, fire or explosion may result.

Do not allow children to play with the packing materials.

- Suffocation or serious injury may result.

Cut up the packing materials before disposal.

All installation work must be performed by qualified personnel in accordance with this manual.

- Improper installation may result in refrigerant leakage, water leakage, serious injury, electric shock, or fire.

If the air conditioner is installed in a small room, take measures to prevent the refrigerant concentration from exceeding the safety limit in the event of refrigerant leakage.

- Consult your dealer regarding the appropriate measures to prevent the allowable concentration from being exceeded. If the refrigerant leaks and the allowable concentration is exceeded, hazards due to a lack of oxygen in the room will result.

Install the unit in accordance with the instructions to minimize the risk of damage from earthquakes and strong winds.

- Improper installation will cause the unit to topple, resulting in serious injury.

The unit must be securely installed on a structure that can sustain its weight.

- Failure to do so will cause the unit to fall, resulting in serious injury.

Seal all openings around pipes and wires to keep out small animals, rainwater, or snow.

- Failure to do so may result in current leakage, electric shock, or damage to the unit.

1-4. Precautions for piping work

Before heating the brazed sections, remove the gas and oil that are trapped in the pipes.

- Failure to do so may generate fire, resulting in serious injury.

Do not purge the air using refrigerant. Use a vacuum pump to evacuate the system.

- Residual gas in the refrigerant lines will cause bursting of the pipes or an explosion.

Do not use oxygen, flammable gas, or a refrigerant containing chlorine for air-tightness testing.

- Doing so may result in an explosion. Chlorine will deteriorate the refrigerant oil.

When installing or relocating the unit, do not allow air or any substance other than the specified refrigerant to enter the refrigerant lines.

- Any substance other than the specified refrigerant may cause abnormally high pressure in the refrigerant lines, resulting in bursting of the pipes or an explosion.

After the installation has been completed, check for refrigerant leaks.

- If the refrigerant leaks, oxygen starvation may result. If the leaked refrigerant comes in contact with a heat source, toxic gas will be generated.

1-5. Precautions for electrical wiring

Include some slack in the power cables.

- Failure to do so may break or overheat the cables, resulting in smoke or fire.

Connections must be made securely and without tension on the terminals.

- Improperly connected cables may break, overheat, or cause smoke or fire.

Tighten all terminal screws to the specified torque.

- Loose screws and contact failure may result in smoke or fire.

Electrical work must be performed by qualified personnel in accordance with local regulations and the instructions provided in this manual. Only use the specified cables and dedicated circuits.

- Inadequate power source capacity or improper electrical work will result in electric shock, malfunction, or fire.

Install an inverter circuit breaker on the power supply of each unit.

- Failure to do so may result in electric shock or fire.

Only use properly rated breakers (an earth leakage breaker, local switch <a switch + fuse that meets local electrical codes>, or overcurrent breaker).

- Failure to do so may result in electric shock, malfunction, smoke, or fire.

Only use standard power cables of sufficient capacity.

- Failure to do so may result in current leakage, overheating, smoke, or fire.

Proper grounding must be provided by qualified personnel.

- Improper grounding may result in electric shock, fire, explosion, or malfunction due to electrical noise. Do not connect the ground wire to gas or water pipes, lightning rods, or telephone ground wires.

After the wiring work has been completed, measure the insulation resistance, and make sure that it reads at least 1 $M\Omega$.

- Failure to do so may result in electric leakage, malfunction, or fire.

1-6. Precautions for relocating or repairing the unit

Only qualified personnel must relocate or repair the unit. Do not attempt to disassemble or alter the unit.

- Failure to do so will result in refrigerant leakage, water leakage, serious injury, electric shock, or fire

Do not service the unit in the rain.

- Doing so may result in electric leakage, electric shock, wire shorting, malfunction, smoke, or fire.

5

1-7. Additional precautions

CAUTION

Do not turn off the power immediately after stopping operation.

- Wait for at least five minutes after the unit has stopped before turning off the power. Failure to do so may result in drain water leakage or the mechanical failure of sensitive parts.

The unit must be periodically inspected by a dealer or qualified personnel.

- If dust or dirt accumulates inside the unit, the drain pipes may become clogged, and water leakage from the pipes may wet the surroundings and generate odours.

Turn on the power at least 12 hours before starting operation. Keep the power turned on throughout the operating season.

- Insufficient energizing will result in malfunction.

Collect the refrigerant and properly dispose of it in accordance with local regulations.

Do not install the unit on or over items that are subject to water damage.

- When the room humidity exceeds 80% or if the drain pipe is clogged, condensation may collect and drip from the indoor unit onto the ceiling or floor.

Take appropriate measures against electrical noise interference when installing the unit in hospitals or radio communication facilities.

- Inverter, high-frequency medical, or wireless communication equipment as well as power generators may cause the air conditioning system to malfunction. The air conditioning system may also adversely affect the operation of these types of equipment by creating electrical noise.

Insulate pipes to prevent condensation.

- Condensation may collect and drip from the unit onto the ceiling or floor.

Keep the service valves closed until refrigerant charging is completed.

- Failure to do so will damage the unit.

Place a wet towel on the service valves before brazing the pipes to keep the temperature of the valves from rising above 120°C (248°F).

- Failure to do so may result in equipment damage.

Keep the flame out of contact with the cables and metal sheet when brazing the pipes.

- Failure to do so may result in burnout or malfunction.

Use the following tools specifically designed for use with the specified refrigerant: Gauge manifold, charge hose, gas leak detector, check valve, refrigerant charge base, vacuum gauge, and refrigerant recovery equipment.

- Gas leak detectors for conventional refrigerants will not react to a refrigerant that does not contain chlorine.
- If the specified refrigerant is mixed with water, refrigerant oil, or another refrigerant, the refrigerant oil will deteriorate and the compressor will malfunction.

Use a vacuum pump with a check valve.

- If the vacuum pump oil flows back into the refrigerant lines, the refrigerant oil may deteriorate and the compressor may malfunction.

Keep tools clean.

- If dust, dirt, or water accumulates on the charging hose or the flare processing tool, the refrigerant will deteriorate and the compressor will malfunction.

Use refrigerant piping made of phosphorus deoxidized copper (copper and copper alloy seamless pipes) that meets local requirements. Pipe joints should also meet local requirements. Keep the inner and outer surfaces of the pipes clean and free of sulphur, oxides, dust/dirt, shaving particles, oils, moisture, or any other contaminants.

- Contaminants on the inside of the refrigerant piping will cause the refrigerant oil to deteriorate and cause the compressor to malfunction.

Store pipes indoors, and keep both ends of the pipes sealed until just before making a flare connection or brazing. (Store elbows and other joints in plastic bags.)

- If dust, dirt, or water enters the refrigerant lines, the refrigerant oil will deteriorate and the compressor will malfunction.

Braze the pipes with a nitrogen purge to avoid oxidation.

- Oxidized flux inside the refrigerant pipes will cause the refrigerant oil to deteriorate and cause the compressor to malfunction.

Do not use existing refrigerant piping.

- The old refrigerant and refrigerant oil in the existing piping contain a large amount of chlorine, which will cause the refrigerant oil in the new unit to deteriorate and cause the compressor to malfunction.

Charge refrigerant in a liquid state.

- Charging refrigerant in the gaseous state will change the composition of the refrigerant and lead to a performance drop.

Do not use a charging cylinder when charging refrigerant.

- The use of a charging cylinder may change the composition of the refrigerant and lead to a performance drop.

If a large electric current flows due to a malfunction or faulty wiring, earth-leakage breakers on the unit side and on the upstream side of the power supply system could both operate. Depending on the importance of the system, separate the power supply system or take protective coordination of breakers.

This appliance is not intended for use by persons (including children) with reduced physical, sensory or mental capabilities, or lack of experience and knowledge, unless they have been given supervision or instruction concerning use of the appliance by a person responsible for their safety.

2. About the product

- The outdoor unit described in this manual is air-conditioning equipment that is designed to be operated in the cooling mode only for IT equipment.
- This unit uses R410A refrigerant.

3. Combination of outdoor units

Configuration	Combination of outdoor units		
Single-outdoor-unit system	m-MOCU-G02-050	-	
Two-outdoor-unit system	m-MOCU-G02-050	m-MOCU-G02-050	

^{* &}quot;Twinning Kit" is required to connect combination units on site.

4. Specifications

Configuration		Single-outdoor-unit system	Two-outdoor-unit system
Sound level (50/60 Hz)		65.0 dB <a>	68.0 dB <a>
External static pressure		0 Pa*2	
Indoor unit	Total capacity	50% to 150%*1	
indoor unit	Quantity	1 to 10	
Operation temperature		Cooling: -15°CDB to 45°CDB	

^{*1} The maximum total capacity of indoor units operating simultaneously is 100%.

SW6-5: OFF (60 Pa) or ON (30 Pa)

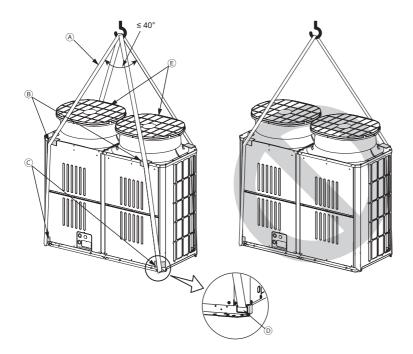
5. Package contents

The table below lists all the parts and their quantities included in the package.

	①	2	3
	Connecting pipe (Liquid side)	Connecting elbow (Gas side)	Tie band
	ID ø15.88 mm (ø5/8 in) OD ø15.88 mm (ø5/8 in)	ID ø28.58 mm (ø1-1/8 in) OD ø28.58 mm (ø1-1/8 in)	
	ID ø15.88 ΟD ø15.88	ID ø28.58 OD ø28.58	control of the second
P500	1	1	2

8

VG79D920H01


^{*2} To enable the high static pressure setting, set the dipswitch on the main board as follows.

6. Transporting the unit

A WARNING

When lifting the unit, pass the slings through the four designated sling holes.

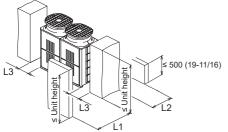
- Improper lifting will cause the unit to topple or fall, resulting in serious injury.
- Always use two slings to lift up the unit. Each sling must be at least 8 m (26 ft) long and must be able to support the weight of the unit.
- Put protective pads between slings and the unit where the slings touch the unit at the base to protect the unit from being scratched.
- Put 50 mm (2 in) or thicker protective pads between slings and the unit where the slings touch the unit at the top of the unit to protect the unit from being scratched and to avoid contact with the slings and the fan guard.
- Make sure that the angles between slings at the top are less than 40 degrees.

- A Slings (Min. 8 m (26 ft) x 2)
- B Protective pads (Minimum thickness: 50 mm (2 in))
 - (two each in the front and back)
- © Protective pads (two each in the front and back)
- Sling holes (two each in the front and back)
- E Fan guard

7. Installation location

Do not install the unit where combustible gas may leak.

- If combustible gas accumulates around the unit, fire or explosion may result.
- Provide sufficient space around the unit for effective operation, efficient air movement, and ease of access for maintenance.
- Note that refrigerant gas is heavier than air and will therefore tend to collect in low spots such as basements.
- When an indoor unit that draws in outside air exits near the outdoor unit, be careful not to affect the normal operation of the indoor unit.


7-1. Single unit installation

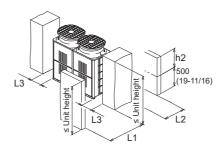
(1) When all walls are within their height limits*.

* Height limit

Front/Right/Left | Same height or lower than the overall height of the unit

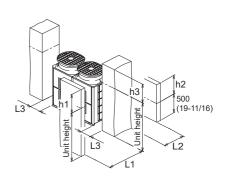
500 mm (19-11/16 in) or lower from the unit bottom

	Required minimum distance [mm (in)]		
	L1 (Front)	L2 (Rear)	L3 (Right/Left)
When the distance behind the unit (L2) needs to be small	450 (17-3/4)	100 (3-15/16)	50 (2)
When the distance to the right or left (L3) needs to be small	450 (17-3/4)	300 (11-13/16)	15 (5/8)


Rear

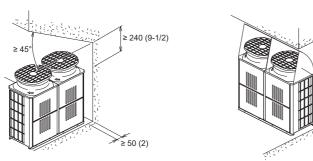
(2) When one or more walls exceed their height limits*.

When the wall(s) at the front and/ or the right/left exceed(s) their height limits


h3 (19-11/16)

When the wall at the rear exceeds its height limit

When all walls exceed their height limits


[mm (in)]

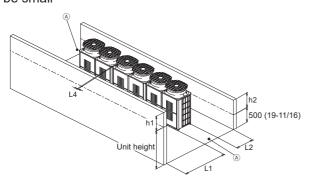
Add the dimension that exceeds the height limit (shown as "h1" through "h3" in the figures) to L1, L2, and L3 as shown in the table below.

	Required minimum distance [mm (in)]		
	L1 (Front)	L2 (Rear)	L3 (Right/Left)
When the distance behind the unit (L2) needs to be small	450 (17-3/4) + h1	100 (3-15/16) + h2	50 (2) + h3
When the distance to the right or left (L3) needs to be small	450 (17-3/4) + h1	300 (11-13/16) + h2	15 (5/8) + h3

(3) When there are overhead obstacles

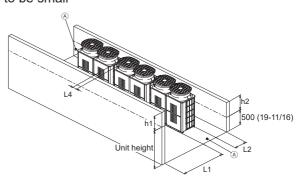
7-2. Multiple unit installation

• When installing multiple units, make sure to take into consideration factors such as providing enough space for people to pass through, ample space between blocks of units, and sufficient space for airflow. (The areas marked with A in the figures below must be left open.)


1000 (39-3/8)

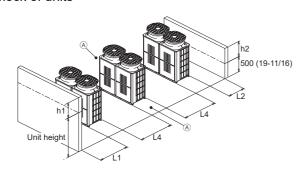
Air outlet guide (not supplied)

- In the same way as with the single unit installation, add the dimension that exceeds the height limit (shown as "h1" through "h3" in the figures) to L1, L2, and L3 as shown in the tables below.
- If there are walls in the front and rear of the block of units, up to three units can be installed consecutively side by side, and a space of 1000 mm (39-3/8 in) or more must be left between each block of three units.

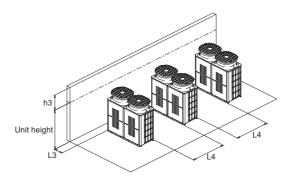

(1) Side-by-side installation

When the distances between the units (L4) need to be small

Required minimum distance [mm (in)]			
L1 (Front) L2 (Rear) L4 (Between)			
450 (17-3/4) + h1	300 (11-13/16) + h2	30 (1-3/16)	


When the distance behind the block of units (L2) needs to be small

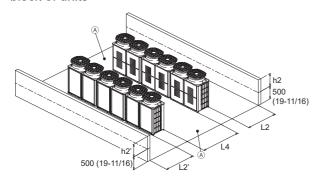
Required minimum distance [mm (in)]			
L1 (Front) L2 (Rear) L4 (Between)			
450 (17-3/4) + h1			

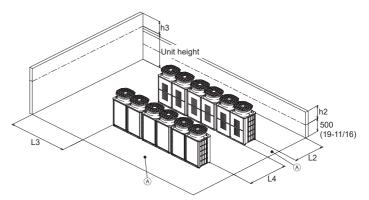

(2) Face-to-face installation

When there are walls in the front and rear of the block of units

Required minimum distance [mm (in)]			
L1 (Front) L2 (Rear) L4 (Between)			
450 (17-3/4) + h1			

When there is a wall on either the right or left side of the block of units




Required minimum distance [mm (in)]		
L3 (Right/Left)	L4 (Between)	
15 (5/8) + h3	450 (17-3/4)	

(3) Combination of face-to-face and side-by-side installations

When there are walls in the front and rear of the block of units

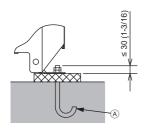
When there are two walls in an L-shape

Required minimum distance [mm (in)]			
L2 (Right) L2' (Left) L4 (Between)			
300 (11-13/16) + h2 300 (11-13/16) + h2' 900 (35-7/16			

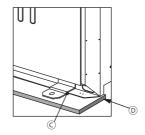
Required minimum distance [mm (in)]			
L2 (Right) L3 (Right/Left) L4 (Between)			
300 (11-13/16) + h2 1000 (39-3/8) + h3 900 (35-7/16)			

A Leave open in two directions.

8. Foundation work


Install the unit in accordance with the instructions to minimize the risk of damage from earthquakes and strong winds.


- Improper installation will cause the unit to topple, resulting in serious injury.


The unit must be securely installed on a structure that can sustain its weight.

- Failure to do so will cause the unit to fall, resulting in serious injury.
- When performing the foundation work, make sure that the floor surface has sufficient strength and carefully route pipes and wires in consideration of the water drainage that will be required when the unit is operated.
- If considering routing the pipes and wires across the bottom of the unit, make sure that the base is at least 100 mm (3-15/16 in) high so that the through-holes will not be blocked.
- Provide a strong base of concrete or angle iron. If a stainless steel base is used, insulate the area between the base and the outdoor unit by putting a rubber cushion or by applying an electrically insulated coating to prevent the base from rusting.
- · Install the unit on a level surface.
- With some types of installation, unit vibration and sound will be transmitted to the floors and walls. In such locations, take measures to prevent vibration (such as using anti-vibration rubber pads).

[mm (in)]

- A M10 anchor bolt (not supplied)
- ® (Incorrect installation) The corner section is not securely received.
- © Fixing bracket for post-installed anchor bolts (not supplied) (To be fixed with three screws)
- Anti-vibration rubber pad
 (The pad needs to be large enough to cover the entire width of each unit leg.)
- Make sure that the corner section is securely received. If not, the unit legs could bend.
- The length of the projecting part of the anchor bolt should be 30 mm (1-3/16 in) or less.
- This unit is not designed to be anchored with post-installed anchor bolts unless fixing brackets are installed at the bottom (six locations).

• In abnormally harsh environments such as cold and/or windy areas, sufficient countermeasures to guard against excessive wind and snow should be taken to ensure the unit's correct operation. When the unit is expected to operate in cooling mode in conditions under 10°C (50°F), in snowy areas, in environments subject to strong winds or rain, install snow hoods of the following specifications (not supplied).

Material: Galvanized steel plate 1.2T

Painting: Overall painting with polyester powder Color: Munsell 3.0Y 7.8/1.1 (same as the unit color)

- Install the unit so that the wind will not blow directly against the inlet and outlet.
- If necessary, install the unit on a raised base of the following specifications (not supplied) to prevent damage from snow.

Material: Angle iron (Build a structure that snow and wind can pass through.)

Height: Expected maximum snowfall plus 200 mm (7-7/8 in)

Width: Within the unit width (If the raised base is too wide, snow will accumulate on the raised base.)

9. Refrigerant piping work

A WARNING

Do not use any refrigerant other than the type indicated in the manuals for the unit and on the nameplate.

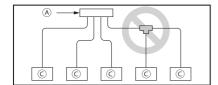
- Doing so will cause the unit or pipes to burst, or result in an explosion or fire during use, during repairs, or at the time of disposal of the unit.
- It may also be in violation of applicable laws.
- MITSUBISHI ELECTRIC HYDRONICS & IT COOLING SYSTEMS S.p.A. cannot be held responsible for malfunctions or accidents resulting from the use of the wrong type of refrigerant.

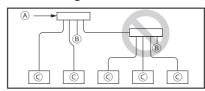
After the installation has been completed, check for refrigerant leaks.

- If the refrigerant leaks, oxygen starvation may result. If the leaked refrigerant comes in contact with a heat source, toxic gas will be generated.

CAUTION

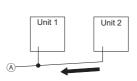
Use the following tools specifically designed for use with the specified refrigerant: Gauge manifold, charge hose, gas leak detector, check valve, refrigerant charge base, vacuum gauge, and refrigerant recovery equipment.

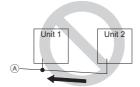

- Gas leak detectors for conventional refrigerants will not react to a refrigerant that does not contain chlorine.
- If the specified refrigerant is mixed with water, refrigerant oil, or another refrigerant, the refrigerant oil will deteriorate and the compressor will malfunction.


Do not use existing refrigerant piping.

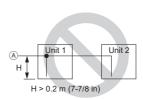
- The old refrigerant and refrigerant oil in the existing piping contain a large amount of chlorine, which will cause the refrigerant oil in the new unit to deteriorate and cause the compressor to malfunction.

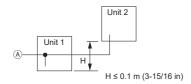
9-1. Restrictions

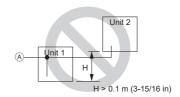

- Existing refrigerant piping must not be used because the design pressure for systems using R410A is higher than that for systems using other types of refrigerants.
- Do not install outdoor unit piping when it is raining.
- · Do not use special detergents for washing piping.
- Always observe the restrictions on refrigerant piping (such as pipe size, pipe length, and vertical separation distance) to prevent equipment failure or a decline in heating/cooling performance.
- Do not install solenoid valves to prevent oil backflow and compressor start-up failure.
- · Branching cannot be made after header branching.

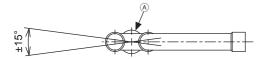


- A From outdoor unit
- B Cap
- © Indoor unit

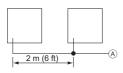

- The pipe from multiple outdoor units must be installed so that oil will not accumulate in the pipe under certain conditions. Refer to the figures below for details.
 - * Small dots in the figures indicate branching points.
 - A To indoor units
 - (1) The pipe from the outdoor units must be inclined downward to the indoor unit side. In the figure on the right, because the pipe is inclined upward, the oil in the pipe accumulates when Unit 1 is in operation and Unit 2 is stopped.

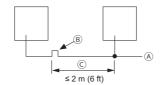



(2) The distance between the unit bottom and the pipe (H) must be 0.2 m (7-7/8 in) or below. In the figure on the right, because the distance is more than 0.2 m (7-7/8 in), the oil accumulates in Unit 1 when Unit 2 is in operation and Unit 1 is stopped.



(3) The vertical separation between units (H) must be 0.1 m (3-15/16 in) or below. In the figure on the right, because the distance is more than 0.1 m (3-15/16 in), the oil accumulates in Unit 1 when Unit 2 is in operation and Unit 1 is stopped.


• Make sure that the inclination tolerance of the Twinning Kit is ±15° to the ground to avoid unit damage.



• If the length of the pipe between the branching point and the outdoor unit exceeds 2 m (6 ft), provide a trap within 2 m (6 ft) from the branching point.

The trap must be at least 200 mm (7-7/8 in) in height. (gas pipe only) If there is no trap, oil can accumulate inside the pipe, causing a shortage of oil and may damage the compressor.

* Small dots in the figures indicate branching points.

- (A) To indoor units
- B Trap (gas pipe only)
- © Gas pipe

9-2. Pipe selection

CAUTION

Use refrigerant piping made of phosphorus deoxidized copper (copper and copper alloy seamless pipes) that meets local requirements. Pipe joints should also meet local requirements. Keep the inner and outer surfaces of the pipes clean and free of sulphur, oxides, dust/dirt, shaving particles, oils, moisture, or any other contaminants.

- Contaminants on the inside of the refrigerant piping will cause the refrigerant oil to deteriorate and cause the compressor to malfunction.

Use refrigerant pipes for use with R410A refrigerant system. Piping for systems for use with other types of refrigerants may not be able to be used.

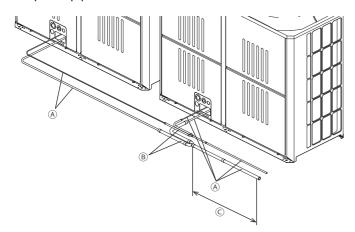
Use refrigerant pipes with the thicknesses specified in the table below.

Size [mm (in)]	Radial thickness [mm (mil)]	Туре
ø6.35 (ø1/4)	0.8 (32)	Type-O
ø9.52 (ø3/8)	0.8 (32)	Type-O
ø12.7 (ø1/2)	0.8 (32)	Type-O
ø15.88 (ø5/8)	1.0 (40)	Type-O
~10.0F (~2/4)	1.2 (48)	Type-O
ø19.05 (ø3/4)	1.0 (40)	Type-1/2H or H
ø22.2 (ø7/8)	1.0 (40)	Type-1/2H or H
ø25.4 (ø1)	1.0 (40)	Type-1/2H or H
ø28.58 (ø1-1/8)	1.0 (40)	Type-1/2H or H
ø31.75 (ø1-1/4)	1.1 (44)	Type-1/2H or H
ø34.93 (ø1-3/8)	1.2 (48)	Type-1/2H or H
ø41.28 (ø1-5/8)	1.4 (56)	Type-1/2H or H

9-3. Twinning kit selection

9-3-1. Indoor unit twinning kit

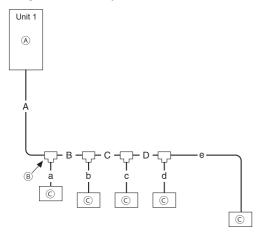
Refer to the manual for the connected indoor unit.

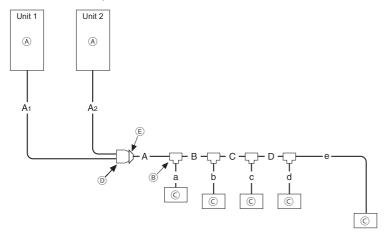

9-3-2. Outdoor unit twinning kit

Select a proper outdoor unit twinning kit (sold separately) based on the outdoor unit configuration, using the table below as a reference.

Configuration	Kit model	
Single-outdoor-unit system	-	
Two-outdoor-unit system	CMY-Y200VBK2	

9-4. Pipe connection example


• Example of pipe connection between outdoor units


- A On-site piping
- B Twinning Kit
- © The pipe section before the twinning pipe must have at least 500 mm (19-11/16 in) of straight section.

• Example of pipe connection between outdoor units and indoor units

Single-outdoor-unit system

Two-outdoor-unit system

- A Outdoor unit
- 1st branching (Refer to the manual for the connected indoor unit.)
- © Indoor unit
- D Outdoor unit twinning kit
- Deformed pipe (Refer to the manual for the connected indoor unit.)

*The total length of A₁ and A₂ is less than 10 m (32 ft).

Pipes A, A_1 , A_2 [mm (in)]

Configuration	Combina	ation unit	Pipe A		Pipe A Pipe		Pipe A ₂	
Configuration	Unit 1	Unit 2	Liquid	Gas	Liquid	Gas	Liquid	Gas
Single-outdoor-unit system	m-MOCU-G02-050	-	ø15.88 (ø5/8)	ø28.58 (ø1-1/8)	-	-	-	-
Two-outdoor-unit system	m-MOCU-G02-050	m-MOCU-G02-050	ø15.88*1 (ø5/8)	ø28.58*1 (ø1-1/8)	ø15.88 (ø5/8)	ø28.58 (ø1-1/8)	ø15.88 (ø5/8)	ø28.58 (ø1-1/8)

^{*1} Deformed pipe is required. (Refer to the manual for the connected indoor unit.)

Change the pipe size as follows using deformed pipe.

CMY-Y200VBK2 Gas: ø34.93 → ø28.58

Liquid: $\emptyset19.05 \rightarrow \emptyset15.88$

Pipes B, C, D [mm (in)]

Total capacity of indoor units	Pipe		
Total capacity of illuoor utilits	Liquid	Gas	
16 kW ≤ Total capacity	ø12.7 (ø1/2)	ø19.05 (ø3/4)	
16 kW < Total capacity ≤ 22.4 kW	ø15.88 (ø5/8)	ø22.2 (ø7/8)	
22.4 kW < Total capacity ≤ 33.5 kW	ø19.05 (ø3/4)	ø25.4 (ø1)	
33.5 kW < Total capacity	ø19.05 (ø3/4)	ø28.58 (ø1-1/8)	

Pipes a, b, c, d, e [mm				
Indoor unit model name	Pipe			
indoor unit modername	Liquid	Gas		
m-MROW/MRAC-G02-009	ø12.7 (ø1/2)	ø19.05 (ø3/4)		
m-MROW/MRAC-G02-015	ø15.88 (ø5/8)	ø22.2 (ø7/8)		
m-MROW/MRAC-G02-025	ø19.05 (ø3/4)	ø25.4 (ø1)		

^{*2} If the pipe length after the first branching point exceeds 40 m (131 ft) (≤ 90 m (295 ft)), use the one size larger liquid pipe for all pipes from indoor units to the first branch.

^{*3} When the vertical separation between the indoor units is 15 m (49 ft) (≤ 30 m (98 ft)), use the one size larger liquid pipe for all pipes from the lower indoor units to the first branch.

9-5. Piping connections and valve operations

Before heating the brazed sections, remove the gas and oil that are trapped in the pipes.

- Failure to do so may generate fire, resulting in serious injury.

Ventilate the room while servicing the unit.

- If the refrigerant leaks, oxygen deficiency may result. If the leaked refrigerant comes in contact with a heat source, toxic gas will be generated.

CAUTION

Store pipes indoors, and keep both ends of the pipes sealed until just before making a flare connection or brazing. (Store elbows and other joints in plastic bags.)

- If dust, dirt, or water enters the refrigerant lines, the refrigerant oil will deteriorate and the compressor will malfunction.

Keep the service valves closed until refrigerant charging is completed.

- Failure to do so will damage the unit.

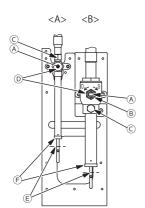
Place a wet towel on the service valves before brazing the pipes to keep the temperature of the valves from rising above 120°C (248°F).

- Failure to do so may result in equipment damage.

Keep the flame out of contact with the cables and metal sheet when brazing the pipes.

- Failure to do so may result in burnout or malfunction.

Braze the pipes with a nitrogen purge to avoid oxidation.


- Oxidized flux inside the refrigerant pipes will cause the refrigerant oil to deteriorate and cause the compressor to malfunction.

9-5-1. Removing the pinched connecting pipes

The unit is shipped with the pinched connecting pipes attached to the liquid- and gas-side service valves to prevent gas leakage.

Take the following steps ① through ③ to remove the pinched connecting pipes before connecting refrigerant pipes to the outdoor unit.

- ① Check that the service valves are fully closed (turned clockwise all the way).
- 2 Remove the gas in the pinched connecting pipes, and drain out all the refrigerant oil. (See © below.)
- 3 Remove the pinched connecting pipes. (See F below.)

- <A> Refrigerant service valve (liquid/brazed)
- Refrigerant service valve (gas/brazed)
- A Valve shaft

The unit is shipped with the valve closed. Keep the valve closed while connecting pipes or evacuating the system. Open the valve upon completion of this work.

Turn the shaft counterclockwise as far as it will go (90°) to open the valve, and clockwise to close it.

B Stopper pin

Prevents the shaft from turning 90° or more.

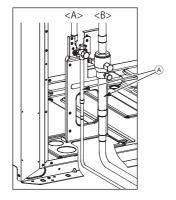
© Service port

Through the service ports, you can charge refrigerant, remove the gas in the pinched connecting pipes, or evacuate the system.

① Cap

Remove the cap before turning the shaft. Put the cap back on upon completion of all work.


- © Severed section of the pinched connecting pipe
- F Brazed section of the pinched connecting pipe


9-5-2. Connecting pipes

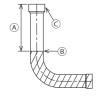
• The refrigerant pipe from the outdoor unit is branched at the pipe end, and each branch is then connected to an indoor unit.

		Connecting method
Outdoor unit	Gas pipe	Brazed
Outdoor unit	Liquid pipe	Brazed
Branched section		Brazed

- Refer to section 5 "Package contents" for details about the supplied connecting pipes.
- When connecting pipes, make sure the service valves are completely closed.
- · Commercially available pipes often contain dust or debris. Always blow them clean with a dry inert gas.
- Take care to prevent dust, water or other contaminants from entering the pipes during installation.
- Reduce the number of bending portions as much as possible, and make the bending radius as big as possible.
- Do not use any commercially available anti-oxidizing agents since they may cause pipe corrosion and degrading of the refrigerant oil. Please contact MITSUBISHI ELECTRIC HYDRONICS & IT COOLING SYSTEMS S.p.A. for more details.
- Make sure that the pipes are not in contact with each other, unit panels, or base plates.
- (1) When routing the pipes through the front of the unit (2) When routing the pipes through the bottom of the unit

- <A> Liquid side
- Gas side
- A Refrigerant service valve piping
- Connecting the on-site piping and the service valve piping When routing the pipes through the front of the unit

Liquid side	Gas side
Use the supplied connecting pipe ①.	Use the supplied connecting elbow ②.


When routing the pipes through the bottom of the unit

Liquid side	Gas side
Expand the end of the on-site piping. (ID ø15.88 mm (ø5/8 in))	Expand the end of the on-site piping. (ID ø28.58 mm (ø1-1/8 in))

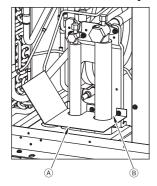
<Reference> Size of refrigerant pipes

	On-site piping [mm (in)]		Service valve	oiping [mm (in)]
Liquid Gas		Liquid	Gas	
	ø15.88 (ø5/8)	ø28.58 (ø1-1/8)	ø15.88 (ø5/8)	ø28.58 (ø1-1/8)

<Reference> Severed section

- A 75 mm (3 in) (reference)
- B Pipe section to be cut (Use a pipe cutter.)
- © Service valve side

• When expanding the on-site piping, satisfy the minimum insertion depth requirement as follows.


Pipe size [mm (in)]	Minimum insertion depth [mm (in)]
ø5 (ø1/4) or more, less than ø8 (ø3/8)	6 (1/4)
ø8 (ø3/8) or more, less than ø12 (ø1/2)	7 (5/16)
ø12 (ø1/2) or more, less than ø16 (ø11/16)	8 (3/8)
ø16 (ø11/16) or more, less than ø25 (ø1)	10 (7/16)
ø25 (ø1) or more, less than ø35 (ø1-7/16)	12 (1/2)
ø35 (ø1-7/16) or more, less than ø45 (ø1-13/16)	14 (9/16)

9-5-3. Sealing the openings around the pipes

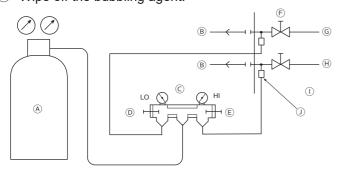
Seal all openings around pipes and wires to keep out small animals, rainwater, or snow.

- Failure to do so may result in current leakage, electric shock, or damage to the unit.

- A Example of closure materials (not supplied)
- B Fill the openings

9-6. Air-tightness test

Do not use oxygen, flammable gas, or a refrigerant containing chlorine for air-tightness testing.


- Doing so may result in an explosion. Chlorine will deteriorate the refrigerant oil.

After refrigerant pipe installation is completed, check the system for leaks by conducting an air-tightness test. If there is a leak, the composition of the refrigerant will change and the performance will drop.

<Air-tightness test procedures>

- 1 Make sure the service valves are closed.
- 2 Add pressure to the refrigerant pipes through the service ports of the liquid and gas pipes.

 * Pressurize to the design pressure (4.15 MPa) using nitrogen gas.
- ③ If the pressure holds for one day and does not decrease, the pipes have passed the test and there are no leaks. If the pressure decreases, there is a leak. Look for the source of the leak by spraying a bubbling agent (e.g., Gupoflex) on the flared or brazed sections.
- 4 Wipe off the bubbling agent.

- A Nitrogen gas
- B To indoor unit
- © Gauge manifold
- D Low pressure knob
- E High pressure knob
- F Service valve
- G Liquid piping
- H Gas piping
- ① Outdoor unit
- J Service port

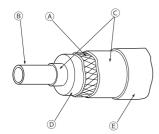
9-7. Thermal insulation for pipes

CAUTION

Insulate pipes to prevent condensation.

- Condensation may collect and drip from the unit onto the ceiling or floor.

Insulate the liquid and gas pipes separately with polyethylene foam insulation materials. Inadequate insulation may cause condensation to drip. Pipes in the ceiling are especially vulnerable to condensation and require adequate insulation.

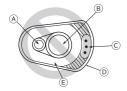

9-7-1. Insulation material

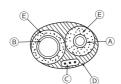
• Check that the insulation materials meet the standards in the table below.

	Pipe size [mm (in)]					
	ø6.35 (ø1/4)–ø25.4 (ø1)	ø28.58 (ø1-1/8)–ø41.28 (ø1–5/8)				
Thickness [mm (in)]	Min. 10 (7/16)	Min. 15 (5/8)				
Heat resistance	e Min. 120°C (248°F)					

^{*} The insulation thickness may need to be increased in high-temperature/humidity conditions.

^{*} Even when specifications are defined by your client, the standards in the table should be met.

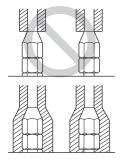


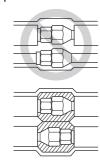

- Steel wire
- B Pipe
- © Oily mastic asphalt or asphalt
- D Insulation material A
- Outer covering B

Insulation	Glass fiber + Steel wire					
material A	Adhesive + Heat-resistant polyethylene foam + Adhesive tape					
Outer covering B	Indoor	Vinyl tape				
	Under the floor and exposed	Waterproof hemp cloth + Bronze asphalt				
	Outdoor	Waterproof hemp cloth + Zinc plate + Oily paint				

^{*} If a polyethylene cover is used as an outer covering, asphalt roofing is not necessary.

· Do not insulate the electric wires.

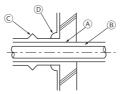




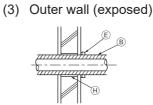
- A Liquid pipe
- ® Gas pipe
- © Electric wire
- D Finishing tape
- E Insulation material

23

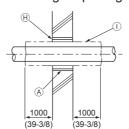
· Make sure that the pipe connections all the way from the indoor unit are properly insulated.


VG79D920H01

9-7-2. Insulation for the section of the pipe that goes through a wall


(1) Inner wall (concealed) (2) Outer wall

(4) Floor (waterproof)



(5) Rooftop pipe shaft

Protecting the penetrating parts in a fire limit zone or through a parting wall

[mm (in)]

- (A) Sleeve
- (B) Insulation material
- (C) Lagging
- (D) Caulking material
- (E) Band
- \bigcirc Waterproof layer
- Sleeve with a flange
- (H)Caulk with a nonflammable material such as mortar.
- Nonflammable insulation material
- When caulking the gaps with mortar, cover the section of the pipe that goes through the wall with a metal sheet to prevent the insulation material from sagging. For this section, use nonflammable insulation and covering materials. (Vinyl tape should not be used.)

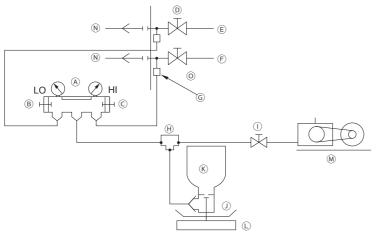
9-8. Evacuation of the system

Do not purge the air using refrigerant. Use a vacuum pump to evacuate the system.

- Residual gas in the refrigerant lines will cause bursting of the pipes or an explosion.

CAUTION

Use a vacuum pump with a check valve.


- If the vacuum pump oil flows back into the refrigerant lines, the refrigerant oil may deteriorate and the compressor may malfunction.

<Evacuation procedures>

- ① Evacuate the system from both service ports, using a vacuum pump with the service valves closed.
- ② After the vacuum reaches 650 Pa, continue evacuation for at least one hour.
- 3 Stop the vacuum pump and leave it for an hour.
- 4 Verify that the vacuum has not increased by more than 130 Pa.
- ⑤ If the vacuum has increased by more than 130 Pa, water infiltration is suspected. Pressurize the system with dry nitrogen gas up to 0.05 MPa. Repeat ① though ⑤ until the vacuum is increased by 130 Pa or below. If the results persist, then perform the "Triple Evacuation" below.

<Triple Evacuation>

- ① Evacuate the system to 533 Pa from both service ports, using a vacuum pump.
- 2 Pressurize the system with dry nitrogen gas up to 0 Pa from the discharge service port.
- ③ Evacuate the system to 200 Pa from the suction service port, using a vacuum pump.
- ④ Pressurize the system with dry nitrogen gas up to 0 Pa from the discharge service port.
- 5 Evacuate the system from both service ports, using a vacuum pump.
- 6 After the vacuum reaches 66.7 Pa, stop the vacuum pump and leave it for an hour. A vacuum of 66.7 Pa must be maintained for at least one hour.
- Verify that the vacuum has not increased for at least 30 minutes.

- Gauge manifold
- B Low pressure knob
- © High pressure knob
- Service valve
- E Liquid piping
- F Gas piping
- G Service port
- H Three-way joint
- Valve (vacuum pump)
- Valve (for charging refrigerant)
- **K** Refrigerant tank
- Scale
- M Vacuum pump
- N To indoor unit
- Outdoor unit
- Use a scale that can measure down to 0.1 kg (0.1 oz).
- Do not use a gauge manifold to measure the vacuum pressure.
- Use a vacuum pump capable of attaining a vacuum of 65 Pa (abs) within five minutes of operation.

9-9. Additional refrigerant charge

CAUTION

Charge refrigerant in a liquid state.

- Charging refrigerant in the gaseous state will change the composition of the refrigerant and lead to a performance drop.

Do not use a charging cylinder when charging refrigerant.

- The use of a charging cylinder may change the composition of the refrigerant and lead to a performance drop.

The amount of refrigerant that is shown in the table below is factory-charged in the outdoor units. The amount necessary for extended piping is not included and needs to be added on site.

Unit model	Factory-charged amount [kg]			
m-MOCU-G02-050	11.8			

The amount of refrigerant that is shown in the table below is the maximum amount to be added on site.

Configuration	Maximum amount to be added [kg]
Single-outdoor-unit system	40.0
Two-outdoor-unit system	99.9

Both refrigerant overcharge and undercharge will cause problems. Charge the system with the proper amount of refrigerant.

Record the added refrigerant amount on the label attached to the control box panel for future servicing.

9-9-1. Calculation of the amount of additional refrigerant

- The amount of refrigerant to be added depends on the size and the total length of the liquid piping.
- Calculate the amount of refrigerant to be charged according to the formula below.
- Round up the calculation result to the nearest 0.1 kg.

<Formula>

When the piping length from the outdoor unit to the farthest indoor unit is 30.5 m (100 ft) or shorter

Amount of additional charge (kg)	=	ø19.05 total length × 0.29 (kg/m)	+	ø15.88 total length × 0.2 (kg/m)	+	ø12.7 total length × 0.12 (kg/m)
----------------------------------	---	--------------------------------------	---	----------------------------------	---	-------------------------------------

	Outdoor unit configuration	Amount (kg)	
+	Single-outdoor-unit system	6.0	
	Two-outdoor-unit system	12.0	

Total capacity of connected indoor units	Amount (kg)
Total capacity ≤ 37 kW	3
37 kW < Total capacity ≤ 44 kW	3.5
44 kW < Total capacity ≤ 54 kW	4.5
54 kW < Total capacity ≤ 71 kW	5
71 kW < Total capacity	6

• When the piping length from the outdoor unit to the farthest indoor unit is longer than 30.5 m (100 ft)

Amount of additional charge (kg)	ø19.05 total length × 0.26 (kg/m)	+	ø15.88 total length × 0.18 (kg/m)	+	ø12.7 total length × 0.11 (kg/m)
----------------------------------	-----------------------------------	---	-----------------------------------	---	----------------------------------

	Outdoor unit configuration	Amount (kg)	
+	Single-outdoor-unit system	6.0	
	Two-outdoor-unit system	12.0	

Total capacity of connected indoor units	Amount (kg)
Total capacity ≤ 37 kW	3
37 kW < Total capacity ≤ 44 kW	3.5
44 kW < Total capacity ≤ 54 kW	4.5
54 kW < Total capacity ≤ 71 kW	5
71 kW < Total capacity	6
	indoor units Total capacity ≤ 37 kW 37 kW < Total capacity ≤ 44 kW 44 kW < Total capacity ≤ 54 kW 54 kW < Total capacity ≤ 71 kW

<Example>

Outdoor unit model: m-MOCU-G02-050 × 2

Total capacity of connected indoor units: 44 kW < Total capacity ≤ 54 kW

* Refer to the pipe connection examples in section 9-4 for the pipes marked with the letters below.

A: ø15.88; 40 m

B: ø19.05; 10 m

C: ø19.05; 15 m

D: ø15.88; 10 m

a: ø12.7; 10 m

b: ø12.7; 5 m

c: ø12.7: 10 m

d: ø12.7; 10 m

e: ø12.7; 10 m

The total length of each liquid piping is as follows:

ø19.05 total length: 10 (B) + 15 (C) = 25

ø15.88 total length: 40 (A) + 10 (D) = 50

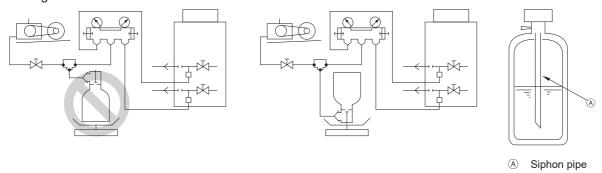
ø12.7 total length: 10 (a) + 5 (b) + 10 (c) + 10 (d) + 10 (e)= 45

Therefore, when the piping length from the outdoor unit to the farthest indoor unit is longer than 30.5 m (100 ft),

Amount of additional charge = $(25 \times 0.26) + (50 \times 0.18) + (45 \times 0.11) + 6.0 \times 2 + 4.5$

= 37.0 kg (Fractions are rounded up.)

9-9-2. Charging additional refrigerant


Charge the calculated amount of refrigerant in the liquid state to the unit through the service port after the completion of piping work. Upon completion of all work, securely tighten all service port caps and shaft caps to prevent refrigerant leakage.

• Do not vent the refrigerant into the atmosphere.

• Refer to the table below for the appropriate tightening torque.

Pipe size [mm (in)]	Shaft cap (N·m)	Shaft (N·m)	Size of hexagonal wrench [mm (in)]	Service port cap (N·m)
ø9.52 (ø3/8)	22	6	4 (3/16)	
ø12.7 (ø1/2)	27	10	4 (3/16)	
ø15.88 (ø5/8)	32	12	4 (3/16)	12
ø19.05 (ø3/4)	50	30	8 (3/8)	
ø25.4 (ø1)	50	30	8 (3/8)	
ø28.58 (ø1-1/8)	22	-	-	16

• If the refrigerant tank does not have a siphon pipe, charge the liquid refrigerant with the tank upside-down as shown in the figure below.

• After evacuation and refrigerant charging, ensure that the service valves are fully open. Do not operate the unit with the service valves closed.

10. Electrical work

A WARNING

Electrical work must be performed by qualified personnel in accordance with local regulations and the instructions provided in this manual. Only use the specified cables and dedicated circuits.

- Inadequate power source capacity or improper electrical work will result in electric shock, malfunction, or fire.

Proper grounding must be provided by qualified personnel.

- Improper grounding may result in electric shock, fire, explosion, or malfunction due to electrical noise. Do not connect the ground wire to gas or water pipes, lightning rods, or telephone ground wires.

10-1. Before electrical work

- · When performing electrical work, refer to the indoor unit or controller installation manuals as well.
- Bear in mind ambient conditions (ambient temperature, direct sunlight, rain water, etc.) when proceeding with the wiring and connections.
- When opening or closing the front panel of the control box, do not let it come into contact with any of the internal components.
- Specific wiring requirements should adhere to the wiring regulations of the region.
- Include some slack in the wiring for the control box on the indoor and outdoor units, because these boxes are sometimes removed at the time of service work.

10-2. Power cables and device capacity

Include some slack in the power cables.

- Failure to do so may break or overheat the cables, resulting in smoke or fire.

Install an inverter circuit breaker on the power supply of each unit.

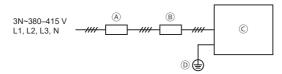
- Failure to do so may result in electric shock or fire.

Only use properly rated breakers (an earth leakage breaker, local switch <a switch + fuse that meets local electrical codes>, or overcurrent breaker).

- Failure to do so may result in electric shock, malfunction, smoke, or fire.

Only use standard power cables of sufficient capacity.

- Failure to do so may result in current leakage, overheating, smoke, or fire.


Tighten all terminal screws to the specified torque.

- Loose screws and contact failure may result in smoke or fire.

CAUTION

If a large electric current flows due to a malfunction or faulty wiring, earth-leakage breakers on the unit side and on the upstream side of the power supply system could both operate. Depending on the importance of the system, separate the power supply system or take protective coordination of breakers.

· Wiring example

- A Earth leakage breaker
- Local switch (Overcurrent breaker and earth leakage breaker)
- © Outdoor unit
- (D) Earth
- Be sure to use the appropriate type of overcurrent breaker. Note that generated overcurrent may include some amount of direct current.
- Select the type of breaker for an inverter circuit as an earth leakage breaker. (Mitsubishi Electric NV-S series or its equivalent)
- The earth leakage breaker should be used in combination with a local switch.
- Use a local switch with at least 3 mm (1/8 in) contact separation in each pole.
- Do not connect the power cables L1, L2, and L3 to N. Ensure the correct phase sequence.
- If the power cable is damaged, it must be replaced by the manufacturer, its service agent or similarly qualified persons in order to avoid a hazard.
- Use dedicated power cables for the outdoor unit. Ensure OC and OS are wired individually.
- Power cable size, device capacity, and system impedance (If local regulations do not specify the minimum power cable size or device capacity, follow the values in the table below.)

		Minin	num size [mm² (A	WG)]		Local sw	itch (A)	0	Maximum
		Power after bra	Power cable after branching point	Earth wire	Earth leakage breaker	Capacity	Fuse	Overcurrent breaker (NFB) (A)	allowable system impedance
Outdoor unit	m-MOCU-G02-050	10.0 (8)	_	10.0 (8)	60 A 100 mA 0.1 sec. or less	63	63	60	0.19 Ω

- Refer to the manual for the connected indoor unit for the power cable work on the indoor unit.
- The wire size is the minimum value for metal conduit wiring. If the voltage drops, use a wire that is one size thicker in diameter. Make sure the power-supply voltage does not drop more than 10%. Make sure that the voltage imbalance between the phases is 2% or less.
- Power supply cords of parts of appliances for outdoor use shall not be lighter than polychloroprene sheathed flexible cord (design 60245 IEC57). For example, use wiring such as YZW.
- This unit is intended for the connection to a power supply system with a maximum permissible system impedance shown in the above table at the interface point (power service box) of the user's supply.
- The user must ensure that this unit is connected only to a power supply system which fulfils the requirement above. If necessary, the user can ask the public power supply company for the system impedance at the interface point.
- This unit complies with IEC 61000-3-12 provided that the short-circuit power Ssc is greater than or equal to Ssc*1 at the interface point between the user's supply and the public system. It is the responsibility of the installer or user of the equipment to ensure, by consultation with the distribution network operator if necessary, that the equipment is connected only to a supply with a short-circuit power Ssc greater than or equal to Ssc*1.

*1 Ssc

Model	Ssc (MVA)	
m-MOCU-G02-050	3.24	

10-3. Control cable specifications

• Transmission cable

Туре	2-core shielded cable CVVS, CPEVS, or MVVS
Size	1.25 mm² (AWG 16), or ø1.2 mm or above
Length	Max. 200 m (656 ft)
Remarks	The maximum allowable length of transmission cables via outdoor units (indoor-outdoor transmission cables) is 500 m (1640 ft). The maximum allowable length of transmission cables from the power supply unit to each outdoor unit is 200 m (656 ft).

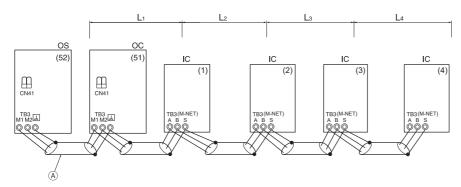
^{*} Do not use a single multiple-core cable to connect indoor units that belong to different refrigerant systems. The use of a multiple-core cable may result in signal transmission errors and malfunctions.

10-4. System configuration

• Unit code and the maximum number of connectable units

Two-outdoor-unit system

Unit type		Code	Number of connectable units	
Outdoor unit	Main unit	OC	_	
Outdoor unit	Sub unit	os	_	
Indoor unit		IC	1 to 10 units per OC	


Single-outdoor-unit system

Unit type		Code	Number of connectable units	
Outdoor unit Main unit		ОС	_	
Indoor unit		IC	1 to 10 units per OC	

^{*} The outdoor units in the same refrigerant circuit are automatically designated as OC and OS. The outdoor units are designated as OC and OS in the order of address from large to small.

· System configuration example

* The numbers in the parentheses in the figures below indicate address numbers.

Shielded cable

*1 Daisy-chain terminals (TB3) on outdoor units together in the same refrigerant system.

Maximum allowable length of control cables

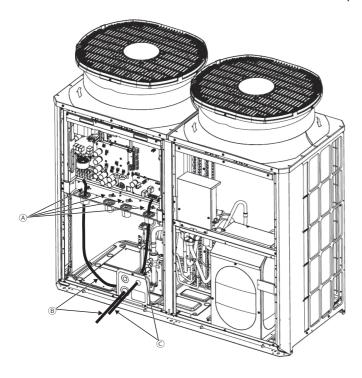
Transmission cables	$L_1 + L_2 + L_3 + L_4 \le 200 \text{ m (656 ft)}$	

^{*} Ensure shield continuity when extending the transmission cable.

^{*} Do not connect the MA/ME remote controllers or the system controllers to the system.

^{*2} Leave the power jumper connected to CN41.

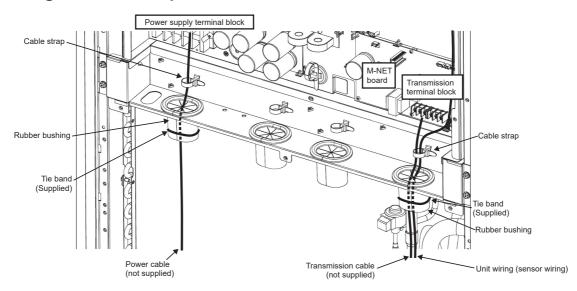
10-5. Wiring connections in the control box

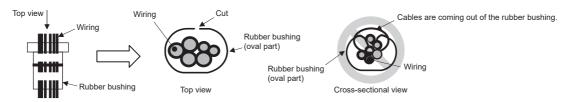


Connections must be made securely and without tension on the terminals.

- Improperly connected cables may break, overheat, or cause smoke or fire.

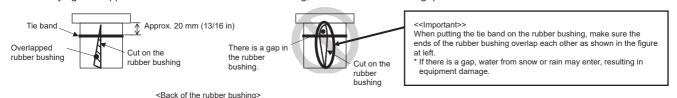
10-5-1. Threading power cable through the knockout hole

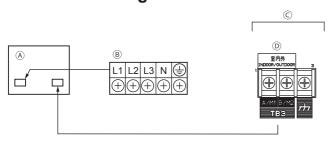

• Punch out the knockout holes at the bottom of the front panel with a hammer.

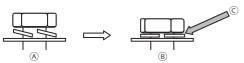

- Cable strap
- B) Power cable
- © Transmission cable
- If there are any gaps around the power cable, please be sure to fill these in with a suitable material.
- When putting the power cable through the knockout hole without using a conduit tube, deburr the hole and protect the power cable with protective tape.
- Use a conduit tube to narrow down the opening if there is a possibility of small animals entering the unit.
- When taking the conduit tube out from the bottom part of the unit, caulk around the tube opening to prevent water infiltration.

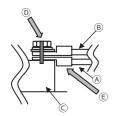
VG79D920H01

10-5-2. Fixing the cables in place


- 1 Thread the power cable through the rubber bushing on the left side. (See *1 and *2 below.)
- 2 Thread the unit wiring (sensor wiring) and the transmission cable through the rubber bushing on the right side. (See *1 and *2 below.)
- 3 Hold the power cable and the transmission cable in place respectively with the cable straps.
- 4 Secure each rubber bushing with the supplied tie band. (See *3 below.)
- *1 Make sure the cables are not coming out of the rubber bushing cut.


*2 When threading the wiring through the rubber bushing, make sure the rubber bushing will not come off the sheet metal on the control box guard.


*3 When tying the supplied tie band around the rubber bushing, make sure to leave no gap between the ends.


10-5-3. Connecting the cables

- A Control box
- B Power supply terminal block (TB1)
- © Connect the outdoor transmission cable.
- Terminal block for indoor-outdoor transmission cable (TB3)

- Terminal block with loose screws
- B Properly installed terminal block
- © Spring washers must be parallel to the terminal block.

- Power cables, transmission cables
- B Daisy-chain (transmission cables only)
- © Terminal blocks (TB1, TB3)
- D Make an alignment mark.
- E Install the ring terminals back to back.
- Connect the cables respectively to the power supply terminal block and the transmission terminal block. Erroneous connection does not allow the system to operate.
- Never connect the power cable to the transmission terminal block. If connected, electrical parts will be damaged.
- Transmission cables should be (5 cm (2 in) or more) apart from the power cable so that it is not influenced by electric noise from the power cable. (Do not put the transmission cables and the power cable in the same conduit.)
- Follow the tightening torque for each screw type as shown below. Be careful not to use excessive torque as this could damage the screw.

Terminal block (TB1 (M6 screw)): 2.5–2.9 [N·m]

Terminal block (TB3 (M3.5 screw)): 0.82-1.0 [N·m]

- · When tightening the screws, do not push the driver strongly to avoid damaging the screw.
- Make an alignment mark with a permanent marker across the screw head, washer, and terminal after tightening the screws.
- ① Connect the indoor-outdoor transmission cable to TB3. If multiple outdoor units are connected to the same refrigerant system, daisy-chain TB3 (M1, M2, earth) on the outdoor units. The indoor-outdoor transmission cable to the indoor unit should be connected to TB3 (M1, M2, earth) of only one of the outdoor units. Connect the shield to the earth terminal.
- ② Fix the cables securely in place with the cable strap below the terminal block.

10-6. Address setting

· Set the address setting switch as follows.

	Address setting method	Address
Outdoor unit (OC, OS)	Assign sequential addresses to the outdoor units in the same refrigerant system.	51 to 52

^{*} The outdoor units in the same refrigerant circuit are automatically designated as OC and OS. The outdoor units are designated as OC and OS in the order of address from small to large.

11. Test run

11-1. Before a test run

CAUTION

After the wiring work has been completed, measure the insulation resistance, and make sure that it reads at least 1 $M\Omega$.

- Failure to do so may result in electric leakage, malfunction, or fire.

Turn on the power at least 12 hours before starting operation. Keep the power turned on throughout the operating season.

- Insufficient energizing will result in malfunction.
- Before performing a test run, turn off the power to the outdoor unit, and disconnect the power cable from the power supply terminal block to measure the insulation resistance.
- Measure the insulation resistance between the power supply terminal block and the earth with a 500 V ohmmeter, and make sure it is at least 1 $M\Omega$.
- Turn on the indoor unit before turning on the power to the outdoor unit.
- If the insulation resistance is 1 M Ω or above, connect the power cable to the power supply terminal, and turn on the power at least 12 hours before starting operation. If the insulation resistance is below 1 M Ω , do not operate the unit, and check the compressor for a earth fault.
- · While the unit is turned on, the compressor will remain energized even when it is stopped.
- The insulation resistance between the power supply terminal block and the earth may drop to near 1 $M\Omega$ immediately after installation or when the main power to the unit has been turned off for a long time because of the stagnation of refrigerant in the compressor.
- By turning on the main power and energizing the unit for 12 hours or longer, the refrigerant in the compressor will evaporate and the insulation resistance will rise.
- Do not apply an ohmmeter voltage to the terminal block for transmission cables. Doing so will damage the control board.
- Do not measure the insulation resistance of the transmission terminal block of the unit remote controller.
- Check for refrigerant leakage and for loose power cables and transmission cables.
- Check that the liquid and gas side service valves are fully open. Tighten the valve caps.
- Check the phase order of the power supply and the interphase voltage. If the voltage is out of the ±10% range, or if the voltage imbalance is more than 2%, discuss the countermeasure with the customer.
- When power is turned on or after power recovery, performance may degrade for approximately 30 minutes.

11-2. Function setting

Make function settings by setting the dipswitches SW4, SW6, and SWP1 on the main board.

Write down the switch settings on the electrical wiring diagram label on the control box front panel for future reference when the control box needs to be replaced.

- Take the following steps to make settings.
- ① Set the 10th bit of SW6 to ON.
- ② Set SW4. (The setting item No. will be displayed on LED1.)
- 3 Press SWP1 for two seconds or longer to change the settings. (The settings can be checked on LED3.)
- Make various function settings by setting SW6, referring to the table below.

	Cotting or countries	Setting		Switch cotting timing	
	Setting content	OFF	ON	Switch setting timing	
SW6-1	_	_	-	_	
SW6-2	-	_	_	_	
SW6-3	_	_	_	_	
SW6-4	Static pressure setting	Standard static pressure	High static pressure	Before being energized	
SW6-5	High static pressure setting	60 Pa	30 Pa	Before being energized	
SW6-6	_	_	_	_	
SW6-7	Low-noise mode selection	Performance priority	Low-noise priority	Any time after being energized	
SW6-8	Selection of Low-noise or Demand	Low-noise (Night)	Demand	Before being energized	
SW6-9	System configuration	Two-outdoor-unit system	Single-outdoor-unit system	Before being energized	
SW6-10	Selection of Diagnostic display or Function detail setting	Diagnostic display	Function detail setting	Any time after being energized	

^{*} Do not change the factory settings of SW5-3 through SW5-8.

11-3. Operation characteristics in relation to the refrigerant charge

It is important to have a clear understanding of the characteristics of refrigerant and the operation characteristics of air conditioners before attempting to adjust the refrigerant charge in a given system.

- During cooling operation, the amount of refrigerant in the accumulator is the smallest when all indoor units are in operation.
- Refrigerant undercharge creates a tendency for the discharge temperature to rise.
- Changing the amount of refrigerant in the system while there is refrigerant in the accumulator has little effect on the discharge temperature.
- The higher the high pressure level, the more likely it is for the discharge temperature to rise.
- The lower the low pressure level, the more likely it is for the discharge temperature to rise.
- When the amount of refrigerant in the system is adequate, the compressor shell temperature is 10 to 60°C (50 to 140°F) higher than the low-pressure saturation temperature. If the temperature difference between the compressor shell temperature and low-pressure saturation temperature is 5°C (41°F) or less, refrigerant overcharge is suspected.

11-4. Operation check

The following symptoms are normal and do not indicate a problem.

Events	Cause
Immediately after startup, the indoor unit	Unstable flow of the refrigerant produces a sound. This is temporary and does not
emits the sound of refrigerant flowing.	imply a problem.

^{*} Unless otherwise specified, leave the switch to OFF where indicated by "-," which may be set to OFF for a reason.

12. Inspection and maintenance

A WARNING

Only qualified personnel must relocate or repair the unit. Do not attempt to disassemble or alter the unit.

- Failure to do so will result in refrigerant leakage, water leakage, serious injury, electric shock, or fire.
- While the unit is turned on, the compressor will remain energized even when it is stopped. Before inspecting the inside of the control box, turn off the power, keep the unit off for at least 10 minutes, and confirm that the capacitor voltage (inverter main circuit) has dropped to 20 VDC or less. (It takes about 10 minutes to discharge electricity after the power supply is turned off.)
- Control boxes house high-voltage and high-temperature electrical parts. They may still remain energized or hot after the power is turned off.
- Perform the service after disconnecting the fan board connector (CNINV) and the inverter board connector (CN1).
 (To plug or unplug connectors, check that the outdoor unit fan is not rotating and that the voltage of capacitor in the main circuit is 20 VDC or below. The capacitor may collect a charge and cause an electric shock when the outdoor unit fan rotates in windy conditions. Refer to the wiring nameplate for details.)
 Reconnect the connector (CNINV) back to the fan board and reconnect the connector (CN1) back to the inverter board after servicing.
- Unit components may be damaged after long use of the unit, resulting in a performance drop or the unit becoming a safety hazard. To use the unit safely and maximize its life, it is recommended that a maintenance contract with a dealer or qualified personnel be signed. If the contract is signed, service technicians will periodically inspect the unit to identify any damage at an early stage, and take appropriate measures.

13. Rating plate information

Configuration	Single-outdoor-unit system		
Unit model	m-MOCU-G02-050		
Refrigerant (R410A)	11.8 kg		
Allowable pressure (Ps)	HP: 4.15 MPa, LP: 2.21 MPa		
Net weight	304 kg		

Configuration	Two-outdoor-unit system			
Unit model	m-MOCU-G02-050	m-MOCU-G02-050		
Refrigerant (R410A)	11.8 kg	11.8 kg		
Allowable pressure (Ps)	HP: 4.15 MPa, LP: 2.21 MPa			
Net weight	304 kg	304 kg		

AIR CONDITIONER OUTDOOR UNIT

MODEL	m-MOCU-G02-050 <h></h>
SERVICE REF.	m-MOCU-G02-050
REFRIGERANT	R410A 11.8 kg
ALLOWABLE PRESSURE(Ps)	HP 4.15MPa (41.5bar) LP 2.21MPa (22.1bar)
WEIGHT	304 kg
IP CODE	IP24
YEAR OF MANUFACTURE	

SERIAL No.

OPERATION		COOLING				
RATED VOLTAGE 3N~ V		380	400	415		
FREQUENCY	Hz		50 / 60			
CAPACITY	kW		50.0			
	kcal/h	45,000				
	Btu/h	170,600				
RATED INPUT	kW	16.00				
RATED CURRENT	Α	27.0 25.6 24.7		24.7		
MAX CURRENT (INDOOR 46°CDB, 24 OUTDOOR 4		37.60				
RATED CONDITION DB / WB	°C	INDOOR 35/21 OUTDOOR 35/-				

Contains fluorinated greenhouse gases.

MANUFACTURER:
MITSUBISHI ELECTRIC HYDRONICS & IT
COOLING SYSTEMS S.p.A.
M11-VIA CADUTI DI CEFALONIA,
1-36061 BASSANO DEL GRAPPA
(VI)-ITALY
MADE IN THAILAND

This product is designed and intended for use in the residential, commercial and light-industrial environment.

The product at hand is based on the following EU regulations:

- Low Voltage Directive 2014/35/EU
- Electromagnetic Compatibility Directive 2014/30/EU
- Pressure Equipment Directive 2014/68/EU
- Machinery Directive 2006/42/EC

Please be sure to put the contact address/telephone number on this manual before handing it to the customer.

MITSUBISHI ELECTRIC HYDRONICS & IT COOLING SYSTEMS S.p.A.

HEAD OFFICE: M11 - VIA CADUTI DI CEFALONIA, 1 - 36061 BASSANO DEL GRAPPA (VI) - ITALY